
1
American Institute of Aeronautics and Astronautics

RAPID PROTOTYPING OF AN AIRCRAFT MODEL
IN AN OBJECT-ORIENTED SIMULATION

P. Sean Kenney*

Systems Development Branch

NASA Langley Research Center
Mail Stop 125B

Hampton VA 23681

Abstract12

A team was created to participate in the Mars Scout
Opportunity. Trade studies determined that an
aircraft provided the best opportunity to complete
the science objectives of the team. A high fidelity
six degree of freedom flight simulation was
required to provide credible evidence that the
aircraft design fulfilled mission objectives and to
support the aircraft design process by providing
performance evaluations. The team created the
simulation using the Langley Standard Real-Time
Simulation in C++ (LaSRS++) application
framework. A rapid prototyping approach was
necessary because the team had only three months
to both develop the aircraft simulation model and
evaluate aircraft performance as the design and
mission parameters matured. The design of
LaSRS++ enabled rapid-prototyping in several
ways. First, the framework allowed component
models to be designed, implemented, unit-tested,
and integrated quickly. Next, the framework
provides a highly reusable infrastructure that
allowed developers to maximize code reuse while
concentrating on aircraft and mission specific
features. Finally, the framework reduces risk by
providing reusable components that allow
developers to build a quality product with a
compressed testing cycle that relies heavily on unit
testing of new components.

* Aerospace Engineer, Member AIAA.

Introduction

NASA’s Mars Scout Opportunity was created to
enlist proposals for innovative investigations that
complement NASA’s core Mars Exploration
Program. NASA Langley Research Center teamed
with the Jet Propulsion Laboratory (JPL), NASA
Goddard Research Center, Lockheed Martin
Astronautics, Aurora Flight Sciences, Charles Stark
Draper Laboratory, Malin Space Science Systems
and several prominent academic researchers to
participate in the opportunity. The team established
science goals for the project that required a
regional survey of Mars. Trade studies determined
that an aircraft provided the best opportunity to
complete the science objects of the team. This led
the team to propose a project where an aircraft
would be released into the atmosphere of Mars to
perform an Aerial Regional-scale Environmental
Survey (ARES).

To create a credible proposal, the team needed to
provide a detailed aircraft design and demonstrate
that it could complete the mission objectives. As
the design evolved, aircraft capability needed to be
evaluated. Specifically, could the aircraft pullout
before striking the ground after being released from
a spacecraft? Could the aircraft fly long enough to
meet the science objectives? Could the aircraft
provide a stable platform that would allow
instrumentation to make usable measurements? A
high fidelity six degree of freedom flight
simulation was required to provide answers to
these questions.

2
American Institute of Aeronautics and Astronautics

Project Timeline

Due to the very nature of the Mars Scout
Announcement of Opportunity, the ARES project
had a very short timeline. The major milestones
were as follows:

• September 2001 - Team members identified.
Defined science objectives and perform trade
studies of platforms to carry out mission.

• December 2001 - Aircraft selected as best
platform to meet science objectives.

• March 2002 - Aircraft outer mold lines
established.

• June 1 2002 – Design Freeze

• August 1 2002 - Proposal turned in.

• December 2002 – Four proposal winners
announced.

• February 2003 – Revised aircraft outer mold
lines defined.

• May 1 2002 – Design Freeze

• May 2003 – Phase A Concept Study Report
turned in.

• August 2003 – Winning team announced.

It can be seen from this timeline that in both phases
of development, the actual time available for

simulation development and analysis was roughly
three months.

The Langley Standard Real-Time Simulation in
C++ (LaSRS++) application framework was used
to support the aircraft design process. The
framework allowed rapid prototyping of the
aircraft as the design and mission parameters were
modified.

Simulation Requirements

The primary science objectives defined by the
science team were intended to bridge critical scale
and resolution measurement gaps in the Mars
Exploration Program (Figure 1). The objectives
required the aircraft to autonomously fly a pre-
planned aerial survey approximately 1.5 km above
the surface of Mars in the southern highlands while
carrying several scientific instruments (Figure 2).

To accomplish its mission objectives the aircraft
must be inserted into the atmosphere of Mars. An
aircraft design was selected that allowed the
aircraft to be folded up and fit inside the aeroshell
of an entry vehicle. The deployment sequence is
illustrated in Figure 3. The sequence begins with
the spacecraft releasing the entry vehicle into the
atmosphere. The entry vehicle then deploys its
parachute and begins to decelerate. The heatshield
is released after the entry vehicle has slowed
sufficiently. Shortly thereafter, the folded aircraft is
released from the aeroshell. As the aircraft falls

Figure 1. ARES Science related to Mars Exploration Program

3
American Institute of Aeronautics and Astronautics

away from the entry vehicle, the tails and wings
unfold and the aircraft begins its flight. Its first task
is to arrest its descent and to pullout into horizontal
flight. Once the pullout is complete the aircraft can
begin its pre-planned aerial survey.

The LaSRS++ simulation framework was selected
to evaluate the flight of the aircraft starting from
where the aircraft was fully deployed, i.e. free from
the entry vehicle and unfolded. Other simulation
tools were selected to model the aircraft/entry body
dynamics and aircraft unfolding. The LaSRS++
based simulation was therefore required to
initialize the aircraft from the outputs of the other
simulation tools. Then the LaSRS++ based
simulation would perform the pullout maneuver
and then navigate following the planned flight
profile. These requirements necessitated the
development of two items: a Mars environment and
an ARES aircraft model.

LaSRS++ supports different world models and
required little modification to add the Mars
environment[1]. Classes were developed to model
the Martian atmosphere, winds, and surface
topology. These classes were implementations of
the existing LaSRS++ design patterns for
environmental models. The new classes were
designed to use the data and equations found in the
Mars-GRAM 2001 distribution and were unit-
tested against the Mars-GRAM application.

This paper focuses on the rapid-prototyping of the
ARES aircraft and will not go into further detail on
the Mars model.

The ARES aircraft model was initially constructed
with a minimal set of components. Aerodynamic,
propulsion, and control system components were
leveraged from other simulation projects and
configured to ARES specifications. Reused
simulation components were substituted with
ARES specific models as the ARES models
became available. Later, each ARES model would
be replaced with progressively more detailed
models. This allowed performance evaluations to
be performed as the design was maturing.

Aircraft Systems

The LaSRS++ simulation framework was designed
to encourage software reuse. It provides a large
number of generic components that developers can
leverage when building a new simulation model.
Figure 4 is a Unified Modeling Language (UML)
diagram that illustrates a simplified depiction of a
typical aircraft model in LaSRS++ [5]. In this
diagram, the Ares class derives from the class
Aircraft. The Ares class is a composite class that
aggregates a number of ‘system’ classes like
AresAeroSystem, and AresPropulsionSystem. Each
system class contains a subsystem model. The
system classes are examples of the mediator pattern
[3,4]. The system classes decouple the subsystem
models from other subsystem models and the
composite aircraft model.

Figure 5 is a UML diagram that provides a detailed
look at the Ares aerodynamic components. The
Ares class contains an AresAeroSystem which in
turn contains an AresAero object. The
AresAeroSystem class provides AresAero with all
of its inputs and instructs the class when to perform
its aerodynamic computations. The AresAero class
is responsible for computing the aerodynamic
coefficients and the total aerodynamic forces and
moments of the aircraft when its update() method
is called. The class is not dependent upon other
simulation models and may therefore be unit-tested
prior to integration into the simulation framework.
The AresAero class is broken into longitudinal and
lateral components. Each of these component
classes is also unit-testable.

Figure 2. ARES Instrumentation

4
American Institute of Aeronautics and Astronautics

A typical frame of computation begins with the
aircraft gathering external inputs and then
instructing all of its system classes to update
themselves. Next the aircraft sums the forces and
moments computed by the system classes and then
integrates its states. Figure 6 demo nstrates a
sequence diagram for the Ares aero classes. The
diagram shows that when the Ares aircraft requests
the AresAeroSystem to update, AresAeroSystem
gets state parameters from the aircraft, provides
them to the AresAero object, and then calls its
update method. The AresAero class then uses its
components to compute aerodynamic coefficients
and the total aerodynamic forces and moments
acting on the aircraft. The aircraft then requests the
newly computed force and moment vectors prior to
aircraft state integration.

Rapid Prototyping of the Aerodynamic Model

When the first outer mold lines were established
there was no data available with which to build an
aerodynamic model. The only data was estimated
design parameters established during the selection
of the aircraft’s shape. While several computational
tools were generating aerodynamic data, the

simulation needed some type of aerodynamic
model to begin performance studies of the aircraft
in different atmospheric effects (winds,
turbulence). With this in mind, an aerodynamic
model from a different aircraft was used to
simulate the ARES aircraft. A general aviation
linearized aerodynamic model was selected, and its
parameters were set to ARES -like properties. The
linearized model consists of two components, a
longitudinal model and a lateral model. Both
models used constant aerodynamic coefficients to
build up the total lift and drag coefficients.
Although this was a very simple aerodynamic
model, it allowed the aircraft to be used for initial
mission analysis.

As the computational tools began to produce
results, the linearized aerodynamic models were
refined to use the new data. Changes to the
parameters of the linearized mo dels only required a
few minutes and thereby allowed the modifications
to be evaluated very quickly. Eventually one of the
more complex tools had produced enough data to
create an aerodynamic coefficient database. The
longitudinal linearized model was then replaced

Figure 3. ARES Deployment Sequence

5
American Institute of Aeronautics and Astronautics

with a new model using four-dimensional lookups
of the aerodynamic coefficients. Because the
longitudinal and lateral mo dels were contained in
the AresAero class, it was the only class modified
to accommodate the changes. This allowed the
simulation to use the new model within minutes of
when the model had completed unit-testing.
Shortly thereafter, the linerized lateral aerodynamic
model was also replaced with a model using two-
dimensional lookups.

As more data became available, the longitudinal
and lateral models were continually updated. Many
different aerodynamic databases were evaluated to
study the effects of different types of control
surfaces, the placement and sizes of control
surfaces, the use of a drogue chute during pullout,
and other aircraft design options. By the end of the
first proposal the integration process only needed
thirty minutes to take a new set of aerodynamic
data tables, integrate the new data into the aero
classes, unit-test, and begin evaluation of the
aircraft’s performance with the modifications.

Rapid Prototyping of Flight Control System

The flight control system began in much the same
way as the aero system. Initially the control system
was leveraged from the general aviation project for
two reasons. First, the control laws were very
simple and allowed for easy modification.
Secondly, the laws matched the initial aerodynamic
database and provided a stable platform. As the
aerodynamic parameters were modified to reflect
ARES performance, the gains of the control laws
were tweaked to maintain a stable aircraft.

A high level view of the control system can be seen
in Figure 4. The AresFlightControlSystem is
composed of three distinct laws, a longitudinal, a
lateral and a directional. As the project controls
group created control laws for the ARES aircraft,
the general aviation laws were replaced. The
longitudinal law was designed as an angle-of-
attack command system, and the lateral law was
designed as a bank angle command system.

In order to begin detailed mission analysis, the
aircraft needed additional navigational capability.

Aircraft

Vehicle

PositionalModel Has a position and orientation
in the simulation

Has attributes of
PositionalModel and has
accelerations

Has attributes of Vehicle and
has aircraft parameters

Aero

TurboFan

AresAero

AresLateralLawAresLongitudinalLaw

AresDirectionalLaw

GenericTurbofan

AresAeroSystem

AresFlightControlSystem

AresSensorSystem

AresPropulsionSystem

AircraftMassProperties

AircraftLimits

AresDataRecordingSystem

FuelSystem

Ares

AresAeroSystem* aero
AresFlightControlSystem* fcs
AresPropulsion* propulsion
AircraftMassProperties* mass_properties
FuelSystem* fuel_system
AircraftLimits* limits
AresDataRecordingSystem* data_recording...

Inheritance

Aggregation

Class

Unidirectional
Association

Legend

Figure 4. ARES Components

6
American Institute of Aeronautics and Astronautics

With that in mind, two autopilot modes were
leveraged from the GenericTransport aircraft
project. An altitude-hold mode was incorporated
into the flight control system to allow the aircraft to
maintain a constant altitude above the terrain.
While the original altitude hold code was based on
an Nz(vertical acceleration) command control
system, it was easily modified to work with an
angle-of-attack command system. Most of the
changes involved setting the gains of the altitude-
hold mode to work well with the Ares aircraft.

A track hold mode was also incorporated into the
flight control system. This mode allowed the
aircraft to follow a pre-determined path via a
sequence of heading commands. The incorporation
of the two autopilot modes allowed mission

profiles to be analyzed for both different aircraft
configurations and environmental conditions.

In the second phase of the proposal a second
longitudinal law was implemented using an Nz
command system. The flight control system was
modified to be able to switch between the two
control laws. The new law was created to evaluate
the performance of the aircraft under a different
control algorithm.

Rapi d Prototyping of Other Models

Several other components were required to
simulate ARES. The propulsion system initially
used a GenericTurboFan object to model a simple
linear thruster with lag. Initially the thruster could
be throttled to allow the aircraft to be placed in a

Aero

virtual void update()
virtual void initialize()
Vector<double>& getForces()
Vector<double>& getMoments()
double getClift()
double getCdrag()
double getCxTotal()
double getCyTotal()
double getCzTotal()
double getCltotal()
double getCmtotal()
double getCnTotal()
void putForces(Vector<double>&)
void putMoments(Vector<double>&)
void putClift(double)
void putCdrag(double)
void putCxTotal(double)
void putCyTotal(double)
void putCzTotal(double)
void putClTotal(double)
void putCmTotal(double)
void putCnTotal(double)

AeroSystem

virtual void update()
virtual void initialize()
Vector<double>& getForces()
Vector<double>& getMoments()
double getClift()
double getCdrag()
double getCxTotal()
double getCyTotal()
double getCzTotal()
double getCltotal()
double getCmtotal()
double getCnTotal()
void putAero(Aero* aero_model)

AresLongitudinalAero

virtual void update()
virtual void initialize()
void putAlphaDegrees(double)
void putMach(double)
void putReynoldsPerMeter(double)
void putElevatorDegrees(double)

AresLateralAero

virtual void update()
virtual void initialize()
void putAlphaDegrees(double)
void putBetaDegrees(double)
void putMach(double)
void putAileronDegrees(double)
void putRudderDegrees(double)

AresAero
AresLongitudinalAero* longitudinal_aero
AresLateralAero* lateral_aero

virtual void update()
virtual void initialize()
void putAlphaDegrees(double)
void putBetaDegrees(double)
void putMach(double)
void putReynoldsPerMeter(double)
void putElevatorDegrees(double)
void putAileronDegrees(double)
void putRudderDegrees(double)

Ares
AresAeroSystem* aero_system

doResetCalc()
doHoldCalc()
doOperateCalc()
propagateState()

AresAeroSystem

AresSensorSystem* sensors
AresAero* aero_model

virtual void update()
virtual void initialize()

AresSensorSystem

double getAlphaDegrees()
double getBetaDegrees()
double getMach()
double getReynoldsPerMeter()
double getElevatorDegrees()
double getAileronDegrees()
double getRudderDegrees()

Figure 5. ARES Aero Components

7
American Institute of Aeronautics and Astronautics

trimmed state. Autothrottle logic was incorporated
to hold the aircraft’s speed while flying a mission
profile. As the design of ARES progressed, a
particular thruster was selected, and the thruster
modeled in the simulation was modified to reflect
its performance. The selected thruster cannot be
throttled meaning that it is commanded either on or
off. The autothrottle law was also modified to
accommodate the pulsing mode of the thruster.

The mass properties system, the fuel system,
aircraft limits, and the sensor system were either
reused framework components or contained

framework components. These systems required
virtually no modifications other than setting the
parameters associated with the Ares aircraft.
Because all of these components have been heavily
reused for many years, they required no testing
beyond confirmation of correct initialization.

Reuse Metrics

A common problem associated with a rapid
prototyping project is that there is an increased risk
of coding errors due to developing at such a fast
pace. Software reuse can mitigate this risk by

Ares AresAeroSystem AresAero AresLongitudinalAero AresLateralAeroAresSensorSystem

update()

putAlphaDegrees()

putMach()

update()
putAlphaDegrees()

putMach()

update()

putAlphaDegrees()

putMach()

update()

putForces()

putMoments()

getForces()
getForces()

getMoments()
getMoments()

getAlphaDegrees()

getMach()

update()

Figure 6. ARES Aero Sequence Diagram

8
American Institute of Aeronautics and Astronautics

reducing the amount of code that needs to be
tested.

There are many different ways to categorize reuse.
This study will use the dependency chain
estimation method described by Madden [2]. The
dependency chain estimation method identifies all
of the source files that are required to build a
simulation containing an aircraft model. The
method provides an upper bound on the amount of
reuse because it falsely counts some components as
reused even though they are conditionally created.
However, for LaSRS++ simulations the
dependency chain method was found to be a simple
and accurate assessment of reuse.

Table 1 illustrates the file counts, lines of code
(LOC), number of classes (NOC) and reuse
statistics for the Ares aircraft at the end of each
development phase. The two reuse metrics
presented are the amount of reuse (AOR) metric
and the external reuse level (ERL) metric. The
amount of reuse value is defined as the ratio of
LOC reused over the total LOC of the aircraft
simulation.

()aircraftframework

framework

LOCLOC

LOC
AoR

+
=

Similarly, the external reuse level is defined as the
ratio NOC reused over the total NOC of the aircraft
simulation.

()aircraftframework

framework

NOCNOC

NOC
ERL

+
=

As the table illustrates, the Ares aircraft exhibited
very high levels of reuse. The framework statistics
only include reused LaSRS++ code, not code from
other aircraft. Considering that some of the
autopilot features found in the flight control system
were leveraged from a different aircraft model and
copied into Ares source code, it could be argued
that the values might be even higher.

Because the project was able to attain such high
levels of reuse, team members were able to rely
heavily on unit testing of new components.
LaSRS++ components have been through more
than 180 testing cycles and are considered very
mature. The few defects found were due to
integration errors. No defects were discovered in
unit-testable components.

Concluding Remarks

The design of LaSRS++ proved to be both flexible
and extendible. The design patterns used in the
framework allows a developer to maximize code
reuse while concentrating on aircraft and mission
specific features. The high levels of re-use attained
by this project also helped mitigate the risk
associated with rapid prototyping. Achieving 96%
AoR and ERL reduced the testing requirements of
the ARES simulation without compromising
quality. The framework also allowed for
component mo dels to be designed, implemented,
unit-tested, and integrated quickly, thereby
facilitating the rapid prototyping required by this
project. Aerodynamic data modifications were
incorporated and tested in less than 30 minutes. As
a result of this, the simulation was used to asses the
capabilities of ARES as its design evolved over a

.9696.7%1051402579528862
(1488)

221583Ares Phase 2

.9797.7%1046252628596197
(750)

220853Ares Phase 1

External
Reuse
Level
(ERL)

Amount of
Reuse
(AOR)

LaSRS++
Class
Count

Model
Class
Count

LaSRS++
LOC

Model
LOC

LaSRS++
File

Count

Model
File

Count

Aircraft
Name

Reuse Metrics of ARES Aircraft Project

.9696.7%1051402579528862
(1488)

221583Ares Phase 2

.9797.7%1046252628596197
(750)

220853Ares Phase 1

External
Reuse
Level
(ERL)

Amount of
Reuse
(AOR)

LaSRS++
Class
Count

Model
Class
Count

LaSRS++
LOC

Model
LOC

LaSRS++
File

Count

Model
File

Count

Aircraft
Name

Reuse Metrics of ARES Aircraft Project

Table 1. ARES Reuse Metrics

9
American Institute of Aeronautics and Astronautics

three month period. The final proposals included
credible pullout, time -of-flight, range, and stability
results generated by the simulation. The ARES
team was selected as one of the four first round
proposal winners and hopes to win the final round
of the design competition.

Bibliography

[1] Richard A. Leslie, et al. LaSRS++ An Object-
Oriented Framework for Real-Time Simulation
of Aircraft. Modeling & Simulation
Technologies Conference, Paper Number
AIAA-98-4529, August, 1998.

[2] M. Madden, Examining Reuse In LaSRS++

Based Projects, Modeling & Simulation
Technologies Conference, Paper Number
AIAA-2001-4119, August, 2001.

[3] Gamma E., Helm R., Johnson R., Vlissides J.

Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley,
Reading, Massachusetts, 1995.

[4] Cunningham, K. Use of the Mediator Design

Pattern in the LaSRS++ Framework. AIAA
Modeling & Simulation Technologies
Conference, Paper Number AIAA-99-4336,
August, 1999.

[5] Douglas, B. Real-Time UML. Addison-Wesley

Publishing Company, Reading, Massachusetts,
1999.

